Important Questions for Class 10 Maths Chapter 8| Introduction of Trigonometry

Spread the love

Introduction of Trigonometry Important Questions for class 10 Chapter 8 (ex 8.1,ex8.2)

title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen>

The Value of the trignometric ratio of an angle do not vary with the lengths of the sides of the triangle; if the angles remains the same.
यदि कोण समान बना रहता हो, तो एक कोण के त्रिकोणमितीय अनुपातों के मानोंं में त्रिभुज की भुजाओं की लम्बाइयों के साथ कोई परिवर्तन नहीं होता है।

Pythagoras Theorem (ex 8.3)

Ex 1. Given tan A =4/3, find the other trigonometric ratios of the angle A
यदि tan A = 4/3 हो तो कोण A के अन्य त्रिकोणमितीय अनुपात ज्ञात कीजिए।

Q 1 Draw

tan A = BC/AB =4/3
4K/3K

Pythagoras Theorem
AC2 = AB2 + BC2
AC2 = (4K)2 + (3K)2
AC2 =
4X4XKXK + 3X3XKXK
= 16K2 + 9K2
AC2=25K2

1AC = 5

EX2 If ∠ B and ∠ Q are acute angles such that sin B = sin Q, then prove that ∠ B = ∠ Q.

यदि B और ∠Q हैं न्यून कोण जैसे sin B = sin Q, तो सिद्ध कीजिए कि ∠ B = ∠ Q.

Let us consider two right angle triangles PQR and ABC where
sin Q = sin B
आइए हम दो समकोणों पर विचार करें त्रिभुज PQR और ABC जहाँ
sin Q = sin B

Ex 2

Kl

So Triangle ABC and triangliePQR are similar therefore
अत: त्रिभुज ABC और त्रिभुजPQR समरूप हैं इसलिए
∠ B = ∠ Q

EX 3 Consider ACB, right-angled at C, inwhich AB = 29 units, BC = 21 units and ABC = θDetermine the values of
(
ACB पर विचार करें, जो C पर समकोण है, जिसमें AB = 29 इकाई, BC = 21 इकाई और ABC = के मान निर्धारित करें।)

(i) cos2 θ + sin2 θ,

(ii) cos2 θ – sin2 θ.

3f

3S 1

a2 – b2 = (a+b)(ab)
3s 2
3s 3

EX 4 In a right triangle ABC, right-angled at B, if tan A = 1, then verify that 2 sin A cos A = 1.
एक समकोण त्रिभुज ABC में, B पर समकोण है, यदि tan A = 1 है, तो सत्यापित करें कि 2 sin A cos A = 1 है।

AC=?
As per Pythogoras Theorem
AB2 + BC2 = AC2
Since AB = BC = 1
(1)2 + (1)2 = 2 = AC2
AC2 = 2
4 S 2

Ex 5 In ∆ OPQ, right-angled at P, OP = 7 cm and OQ – PQ = 1 cm (see Fig.). Determine the values of sin Q and cos Q
OPQ में, P पर समकोण, OP = 7 सेमी और OQ – PQ = 1 सेमी (देखिए आकृति )। sin Q और cos Q के मान ज्ञात कीजिए।

OQ2 = OP2 + PQ2
(1+PQ)2 = OP2 + PQ2
(a+b)2 = a2 + 2ab +b2
12 +2XPQ + PQ2 = OP2 + PQ2
1 + 2PQ = OP2
1 + 2PQ = 72
2PQ = 49-1=48
PQ = 48/2 =24
So OQ = 1+PQ = 1 + 24
OQ = 25

title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen>

5 Questions & Hints

Question-1

If tan θ + cot θ = 5, find the value of tan2θ + cot2θ. (2012)
Hint-

Question 2.
If sec 2A = cosec (A – 27°) where 2A is an acute angle, find the measure of ∠A. (2012, 2017D)

Hint

Question 4.
If sin θ – cos θ = 0, find the value of sin4θ + cos4θ.
(2012, 2017D)

Question 5.
If sec θ + tan θ = 7, then evaluate
sec θ – tan θ.
(2017OD)

Flash Cards for 1 to 5 Questions

Question 1.
If tan θ + cot θ = 5, find the value of tan2θ + cot2θ. (2012)

23

Question Explanation:

If tan θ + cot θ = 5, find the value of tan2θ + cot2θ. (2012)
Solution:
tan θ + cot θ = 5 … [Given
tan2θ + cot2θ + 2 tan θ cot θ = 25 … [Squaring both sides
tan2θ + cot2θ + 2 = 25
∴ tan2θ + cot2θ = 23

Question 2.
If sec 2A = cosec (A – 27°) where 2A is an acute angle, find the measure of ∠A. (2012, 2017)

39

Question Explanation:

Question 2.
If sec 2A = cosec (A – 27°) where 2A is an acute angle, find the measure of ∠A. (2012, 2017)

Hint

Solution:
sec 2A = cosec (A – 27°)
cosec(90° – 2A) = cosec(A – 27°) …[∵ sec θ = cosec (90° – θ)
90° – 2A = A – 27°
90° + 27° = 2A + A
⇒ 3A = 117°
∴ ∠A =117/3= 39°

Question-4
If sin θ – cos θ = 0, find the value of sin4θ + cos4θ.
(2012, 2017)

1/2

Question Explanation:

If sin θ – cos θ = 0, find the value of sin4θ + cos4θ. (2012, 2017)

A 4 11zon

Question 3
Q 3 F

0

Question Explanation:

Q 3 F

Hint

Solution:
A 3

Question-5
If sec θ + tan θ = 7, then evaluate
sec θ – tan θ.
(2017OD)

1/7

Question Explanation:

Question-5
If sec θ + tan θ = 7, then evaluate
sec θ – tan θ.
(2017OD)

Solution:
We know that,
sec2θ – tan2θ = 1
(sec θ + tan θ) (sec θ – tan θ) = 1
(7) (sec θ – tan θ) = 1 …[sec θ + tan θ = 7; (Given)
∴ sec θ – tan θ =1/7

Next 5 Questions & Hint

Question 7.
If cosec θ =5/4, find the value of cot θ.
(2014)

Question 8
If θ = 450, then what is the value of
2 sec2450+ 3 Cosec2450

(2014)

Question 10.
Evaluate: sin219° + sin271°.
(2015)

Question 7.
If cosec θ =5/4, find the value of cot θ. (2014)

Question 8
If θ = 450, then what is the value of 2 sec2450+ 3 Cosec2450
(2014)

10

Question Explanation:

2 sec2θ + 3 cosec2θ = 2 sec245° + 3 cosec245°
2X(√2)2 + 3 X (√2)2
2 X 2 + 3 X 2
=4+6=10

Question-9
Q 9

Question 10.
Evaluate: sin219° + sin271°.
(2015)

1

Question Explanation:

Question 10.
Evaluate: sin219° + sin771°. (2015)

Solution:
sin219° + sin271°
= sin219° + sin2(90° – 19°)…[∵ sin(90° – θ) = cos θ
= sin219° + cos219° = 1 …[∵ sin2θ + cos2 θ = 1]

1

Trigonometry Quiz 1 to 10

Logo

The number of attempts remaining is 10

1 / 10

Question-4
If sin θ – cos θ = 0, find the value of sin4θ + cos4θ.
(2012, 2017)

2 / 10

Question 1.
If tan θ + cot θ = 5, find the value of tan2θ + cot2θ. (2012)

3 / 10

Question 7.
If cosec θ =5/4, find the value of cot θ. (2014)

4 / 10

Question 8
If θ = 450, then what is the value of 2 sec2450+ 3 Cosec2450
(2014)

5 / 10

Question-5
If sec θ + tan θ = 7, then evaluate
sec θ – tan θ.
(2017OD)

6 / 10

Question 2.
If sec 2A = cosec (A – 27°) where 2A is an acute angle, find the measure of ∠A. (2012, 2017)

7 / 10

Question 10.
Evaluate: sin219° + sin271°.
(2015)

8 / 10

9 / 10

Question-9
Q 9

Click for Next 10 Questions

To be uploaded soon